Maximum Likelihood Estimators for the Generalized Yule Distribution

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Maximum Likelihood Estimators for some Generalized Pareto-like Frequency Distribution

Abstract. In this paper we consider some four-parametric, so-called Generalized Pareto-like Frequency Distribution, which have been constructed using stochastic Birth-Death Process in order to model phenomena arising in Bioinformatics (Astola and Danielian, 2007). As examples, two ”real data” sets on the number of proteins and number of residues for analyzing such distribution are given. The co...

متن کامل

Maximum Likelihood-Like Estimators for the Gamma Distribution

It is well-known that maximum likelihood (ML) estimators of the two parameters in a Gamma distribution do not have closed forms. This poses difficulties in some applications such as real-time signal processing using low-grade processors. The Gamma distribution is a special case of a generalized Gamma distribution. Surprisingly, two out of the three likelihood equations of the generalized Gamma ...

متن کامل

Generalized Empirical Likelihood Estimators

In an effort to improve the small sample properties of generalized method of moments (GMM) estimators, a number of alternative estimators have been suggested. These include empirical likelihood (EL), continuous updating, and exponential tilting estimators. We show that these estimators share a common structure, being members of a class of generalized empirical likelihood (GEL) estimators. We us...

متن کامل

Generalized Maximum Spacing Estimators

The maximum spacing (MSP) method, introduced by Cheng and Amin (1983) and independently by Ranneby (1984), is a general method for estimating param­ eters in univariate continuous distributions and is known to give consistent and asymptotically efficient estimates under general conditions. This method can be derived from an approximation based on simple spacings of the Kullback-Leibler informat...

متن کامل

The Convergence of Lossy Maximum Likelihood Estimators

Given a sequence of observations (Xn)n≥1 and a family of probability distributions {Qθ}θ∈Θ, the lossy likelihood of a particular distribution Qθ given the data Xn 1 := (X1,X2, . . . ,Xn) is defined as Qθ(B(X 1 ,D)), where B(Xn 1 ,D) is the distortion-ball of radius D around the source sequence X n 1 . Here we investigate the convergence of maximizers of the lossy likelihood.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of PharmTech Research

سال: 2018

ISSN: 2249-3387

DOI: 10.46624/ajptr.2018.v8.i5.008